A Coincidence Theorem for Holomorphic Maps toG/P
نویسندگان
چکیده
منابع مشابه
A coincidence theorem for holomorphic maps to G/P
The purpose of this note is to extend to an arbitrary generalized Hopf and CalabiEckmann manifold the following result of Kalyan Mukherjea: Let Vn = S 2n+1×S2n+1 denote a Calabi-Eckmann manifold. If f, g : Vn−→P are any two holomorphic maps, at least one of them being non-constant, then there exists a coincidence: f(x) = g(x) for some x ∈ Vn. Our proof involves a coincidence theorem for holomor...
متن کاملA Sharp Compactness Theorem for Genus-One Pseudo-Holomorphic Maps
For each compact almost Kahler manifold (X,ω, J) and an element A of H2(X ;Z), we describe a natural closed subspace M 0 1,k(X,A; J) of the moduli space M1,k(X,A; J) of stable J-holomorphic genus-one maps such that M 0 1,k(X,A; J) contains all stable maps with smooth domains. If (P, ω, J0) is the standard complex projective space, M 0 1,k(P , A; J0) is an irreducible component of M1,k(P, A; J0)...
متن کاملA Picard type theorem for holomorphic curves∗
Let P be complex projective space of dimension m, π : Cm+1\{0} → P the standard projection and M ⊂ P a closed subset (with respect to the usual topology of a real manifold of dimension 2m). A hypersurface in P is the projection of the set of zeros of a non-constant homogeneous form in m+ 1 variables. Let n be a positive integer. Consider a set of hypersurfaces {Hj} j=1 with the property M ∩ ⋂...
متن کاملA Splitting Theorem for Holomorphic Banach Bundles
This paper is motivated by Grothendieck’s splitting theorem. In the 1960s, Gohberg generalized this to a class of Banach bundles. We consider a compact complex manifold X and a holomorphic Banach bundle E → X that is a compact perturbation of a trivial bundle in a sense recently introduced by Lempert. We prove that E splits into the sum of a finite rank bundle and a trivial bundle, provided H(X...
متن کاملCoupled coincidence point theorems for maps under a new invariant set in ordered cone metric spaces
In this paper, we prove some coupled coincidence point theorems for mappings satisfying generalized contractive conditions under a new invariant set in ordered cone metric spaces. In fact, we obtain sufficient conditions for existence of coupled coincidence points in the setting of cone metric spaces. Some examples are provided to verify the effectiveness and applicability of our results.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Canadian Mathematical Bulletin
سال: 2003
ISSN: 0008-4395,1496-4287
DOI: 10.4153/cmb-2003-029-4